
Abstract. Double- and triple-zeta basis sets of Slater-
type functions (STFs) are developed for the 17 atoms
from He to Ar. For computational economy, the
exponents of STFs corresponding to the same atomic
subshell are restricted to be common. Instead, the
principal quantum numbers of the STFs are thoroughly
optimized within the framework of integer values to
reduce the energy loss due to the common exponent
restriction.
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1 Introduction

With the aim of improving the description of atomic
electronic structure, Koga et al. [1] reoptimized the
exponents, f, and principal quantum numbers, n, of the
classical wave functions of Clementi and Roetti [2] based
on Slater-type functions (STFs) and showed that the
optimum choice of n improves notably the double-zeta
(DZ) approximation of atoms. The new DZ functions
have been referred to as improved DZ (IDZ). Within the
single-zeta (SZ) framework, Koga and coworkers [3, 4]
have also reported that an extension of the STF n from
integers to nonintegers further improves the description
of the atomic electronic state.

In previous work [5±7], we showed that the use of a
single exponent, which is common to a group of some
STFs, decreases signi®cantly the integral computational
time as a consequence of the reduction in the number of
di�erent exponents. They were named single-exponent
STFs (SESTFs). When two and three STFs with a
common exponent but smallest di�erent integer n values
are assigned to each atomic subshell, the resultant

functions are called conventional DZ-SESTF (CDZ-
SESTF) and conventional triple-zeta (TZ) SESTF (CTZ-
SESTF), respectively. We also proposed [8] noninteger-n
DZ (NDZ) basis sets which incorporate the noninteger n
into the SESTF scheme. They were named NDZ-
SESTF.

The increased ¯exibility by the use of noninteger n in
STFs undoubtedly improves the quality of the basis
functions; however, almost all existing molecular codes
do not accept noninteger values for STF n. The purpose
of this work is to construct SESTF basis sets of DZ and
TZ sizes using STFs with integer n. An important point
is that we optimize the integer n as well as f variationally
in order to reduce the energy loss in the SESTF scheme,
while keeping their computational e�ciency. The two
new sets of wave functions developed in this study will
be referred to as IDZ-SESTF and ITZ-SESTF, where
the acronym ``I'' stands for ``improved''. The next sec-
tion outlines our computational method, and in Sect. 3
the results are presented and compared with those from
the updated CDZ [1], CDZ-SESTF, CTZ-SESTF, and
NDZ-SESTF [8]. Hartree atomic units are used
throughout.

2 Computational outline

We focused our examinations on the SESTF method, in which the
same exponent is shared by two (DZ) and three (TZ) STFs corre-
sponding to an atomic subshell [5], and the DZ and TZ calculations
were performed for the atoms from He to Ar in their ground state
within the Roothaan±Hartree±Fock (RHF) framework. All our
RHF calculations were carried out using a modi®ed and corrected
version [9] of Pitzer's program [10]. The variational optimization of
the nonlinear f parameters was performed by the conjugate direc-
tions method [11], while the optimization of n was performed by a
step grid variation allowing a maximum value of 10 for n of the
atoms from He to Ne and 7 for those of the atoms from Na to Ar.
For the atoms from He to Ne, we never met an optimum value of
n � 10. In the optimization of the atoms Na to Ar, however, we
found n � 7 is best for some STFs. In the latter cases, the maximum
value allowed was increased to assure its optimality.

We tested several initial values for the nonlinear parameters in
order to ®nd the best minimum. In all our ®nal results, the virialCorrespondence to: J. M. GarcõÂ a de la Vega
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ratio did not deviate from its exact value �ÿ2� by more than
5� 10ÿ8. This suggests that our nonlinear optimization is
su�ciently accurate.

3 Results and discussion

Table 1 summarizes the RHF total energies, E�W �, for
the ground-state atoms from He to Ar obtained from
six di�erent wave functions: W = CDZ, NDZ-SESTF,
CDZ-SESTF, CTZ-SESTF, IDZ-SESTF, and ITZ-
SESTF. The best energy is obtained by CDZ for seven
atoms (He, Li, and OAMg), by NDZ-SESTF for
three atoms (B, C, and N), and by ITZ-SESTF for
seven atoms (Be and AlAAr). Among the four SESTF
methods, we ®nd in general that NDZ-SESTF with
noninteger n gives lower energies than the other SESTFs
with integer n, except for six atoms (Al to Ar), where
ITZ-SESTF is the best. Within the DZ SESTF scheme
with integer n, the optimization of the STF n results in a
signi®cant improvement in atomic total energies. The
largest improvement, E(CDZ-SESTF) ± E(IDZ-SESTF),
amounts to 0.64 hartrees for the Mg atom. In the TZ
SESTF scheme with integer n, however, the total energy-
lowering obtained by the optimization of n is not so
dramatic. Among the 17 atoms, the best improvement,
E(CTZ-SESTF) ± E(ITZ-SESTF), is 7 mhartrees for the
Mg atom. Thus, the total energy error introduced by
the SESTF scheme decreases as the number of STFs
assigned for a subshell increases and is balanced with the
optimization e�ect of n.

The total energy errors, DE�W � � E�W � ÿ E�NHF�,
where E�NHF� denotes the HF limit values obtained by
the numerical HF (NHF) method [12], of the ®ve wave
functions W = CDZ, NDZ-SESTF, CTZ-SESTF, IDZ-
SESTF, and ITZ-SESTF are plotted in Fig. 1. DE(CDZ-
SESTF) is not shown since its error is considerably
larger than that of the other ®ve. This also implies that

within the DZ approximation, the energy increase by the
SESTF method, as seen in DE(CDZ-SESTF), is su�-
ciently compensated, as seen in DE(IDZ-SESTF), by the
optimization of the STF n by keeping them as integers.
However, the IDZ-SESTF energy errors in Fig. 1 are
not still as small as the CDZ, NDZ-SESTF, CTZ-
SESTF, and ITZ-SESTF ones. The use of noninteger n
is required in the DZ SESTF scheme to obtain a result
comparable with that from CDZ. (Notice that the
number of optimized exponents in a DZ SESTF basis is
equivalent to the number of exponents in an SZ basis.)
In the TZ SESTF basis, however, the addition of one
more STF with a common exponent to a DZ SESTF
gives the total energy errors comparable with, or smaller
than the, CDZ ones, albeit the number of independent
exponents is exactly the same as the SZ basis.

We also examined the accuracy of the orbital energies
of occupied atomic orbitals; however, the details are not
given here because the results are essentially parallel to
those of the total energies described previously. When
the outermost orbital energies obtained with the previ-
ously mentioned six wave functions are compared with
the NHF values, the di�erences are generally larger for
CDZ-SESTF and smaller for CDZ and ITZ-SESTF.
The ITZ-SESTF gives the outermost orbital energies
closest to the NHF ones for the six atoms from He to Be
and from Al to P, the CDZ values are closest for the ten
atoms from B to Mg, S, and Cl, and the CTZ-SESTF is
the best for the Ar atom.

We refer to the STFs forming an SESTF set as sk and
pk for s- and p-type functions, respectively. The index k
in the sk (pk) notation enumerates the s-type (p-type)
STFs in a decreasing order of f and in an increasing
order of n among two or three STFs sharing the same
exponent. This numeration corresponds to the arrange-
ment of STFs from the tightest to the most di�use in a
given symmetry. Thus, the s1 and s2 functions in DZ

Table 1. Comparison of the six Roothaan±Hartree±Fock total
energies (hartrees) for the atoms from He to Ar obtained from the
wave functions conventional double zeta (CDZ), noninteger-n

double zeta (NDZ)-single-exponent Slater-type function (SESTF),
CDZ-SESTF, conventional triple zeta (CTZ)-SESTF, improved
double zeta (IDZ)-SESTF, and improved triple zeta (ITZ)-SESTF

Atom CDZa NDZ-SESTFb CDZ-SESTF CTZ-SESTF IDZ-SESTF ITZ-SESTF

He )2.86167263 )2.861591066 )2.847656250 )2.861590055 )2.861470758 )2.861666717
Li )7.43272228 )7.432711965 )7.425989357 )7.432703053 )7.432550230 )7.432716862
Be )14.5723706 )14.57295716 )14.56522801 )14.57280356 )14.57202941 )14.57299790
B )24.5279215 )24.52878429 )24.50948594 )24.52796510 )24.52664335 )24.52854283
C )37.6867513 )37.68775704 )37.63709731 )37.68580336 )37.68329111 )37.68683986
N )54.3979559 )54.39886946 )54.28828796 )54.39521618 )54.39008205 )54.39672901
O )74.8043333 )74.80430697 )74.56565743 )74.79753895 )74.78239172 )74.79831534
F )99.4013191 )99.39939594 )98.97438297 )99.38849830 )99.35577468 )99.38906194
Ne )128.535120 )128.5302272 )127.8525173 )128.5141329 )128.4561906 )128.5147219
Na )161.850044 )161.8466218 )161.1783395 )161.8344057 )161.8035422 )161.8376090
Mg )199.607034 )199.6039206 )198.9335757 )199.5939678 )199.5744263 )199.6009875
Al )241.873245 )241.8717395 )241.6549989 )241.8711344 )241.8452813 )241.8760329
Si )288.851202 )288.8497821 )288.5809095 )288.8489979 )288.8157846 )288.8537971
P )340.715991 )340.7141361 )340.4217807 )340.7134866 )340.6712766 )340.7181905
S )397.502323 )397.4996992 )397.1740586 )397.4994388 )397.4481223 )397.5042343
Cl )459.479636 )459.4763426 )459.1256637 )459.4769611 )459.4201199 )459.4813360
Ar )526.815145 )526.8109392 )526.4393201 )526.8127961 )526.7610526 )526.8166793

a From Ref. [1]
b From Ref. [8]
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SESTFs and s1, s2, and s3 functions in TZ SESTFs, for
example, are the main contributions to the 1s atomic
orbital. Following this arrangement, the optimum n for
the IDZ-SESTF and ITZ-SESTF wave functions are
given in Table 2, in which s- and p-type functions
are separated by a slash and the STFs with di�erent f are
distinguished by a comma. The optimum integer n values
obtained in the IDZ-SESTF approximation compare
well with the optimum noninteger n values obtained in
the NDZ-SESTF approximation presented in Fig. 3 of
Ref. [8]; however, we do not ®nd any systematic rules for
the arrangement of the optimum integer n values in both
IDZ- and ITZ-SESTF wave functions. Nevertheless, if
one wishes to use a uni®ed arrangement of n throughout
a period, we may propose within a DZ scheme

Li, Be 13; 37
BANe 13; 37=25
Na, Mg 13; 36; 12=25
AlAAr 13; 36; 12=25; 37 :

However, this choice of the STF n introduces total
energy errors of 2� 10ÿ4, 4� 10ÿ4, 7� 10ÿ4, 4� 10ÿ3,
and 2� 10ÿ2 hartrees for Li, Na, Al, Cl, and Ar atoms,
respectively, relative to the E(IDZ-SESTF). For heavier
atoms, such as Ar, the error is not trivial, and we
recommend using the optimum n values given in Table 2
for individual atoms.

Table 3 exempli®es and compares the parameters n
and f of the optimum NDZ-, CDZ-, IDZ-, CTZ-, and
ITZ-SESTF wave functions for the Si atom. As men-
tioned earlier, the integer n values in IDZ-SESTF better
approximate the noninteger n values in NDZ-SESTF
than those in CDZ-SESTF, if we compare the three DZ
SESTF functions. There are exceptions, however. For
the p3 and p4 STFs, IDZ-SESTF has n values far from
those of NDZ-SESTF because the optimum n value
(1.43) is smaller than the smallest nominal value (2) of
p-type functions. The f parameters in Table 3 for the ®ve
SESTF wave functions are not very di�erent, particu-
larly for those corresponding to outer atomic orbitals.

The variation of the optimum exponents in the
CDZ- and IDZ-SESTF wave functions are shown as a
function of the atomic number, Z, in Fig. 2. The re-
sults again con®rm the approximate linear Z-depen-
dence of exponents observed in our previous studies
on SESTF basis sets, in which common exponents
were optimized by either subshells or shells [6, 7] with
integer or noninteger [8] STF n; however, some devi-
ations from approximate linearity appear in Fig. 2.
They may not be due to the sudden change in n from
one atom to the next, since they are found in both
the CDZ- and IDZ-SESTF functions. The exponent
for the s1 and s2 STFs in CDZ- and IDZ-SESTF are
similar, partly because the s1 STFs have the same
value (unity) of n. On the other hand, the exponent
for the s3 and s4 STFs is smaller for CDZ-SESTF
than for IDZ-SESTF, due to larger n in IDZ-SESTF.
This exponent in IDZ-SESTF shows a small jump
when we move from Z � 11 to 12. The corresponding

Fig. 1. The total energy errors of
the conventional double zeta
(CDZ), noninteger-n double zeta
(NDZ)-single-exponent Slater-
type function(SESTF), improved
double zeta (IDZ)-SESTF, con-
ventional triple zeta (CTZ)-
SESTF, and improved triple zeta
(ITZ)-SESTF approximations
relative to the numerical Hartree±
Fock values

Table 2. Optimum quantum numbers for the IDZ- and ITZ-
SESTF basis sets for the atoms from He to Ar

Atom IDZ-SESTF ITZ-SESTF

He 13 137
Li 13, 12 123, 124
Be 13, 37 123, 125
B 13, 37/25 123, 125/247
C 13, 37/25 123, 125/247
N 13, 37/25 123, 125/247
O 13, 37/25 123, 125/247
F 13, 37/25 123, 234/234
Ne 13, 37/25 123, 125/234
Na 13, 37, 36/25 123, 235, 136/247
Mg 13, 36, 12/25 123, 235, 236/247
Al 13, 36, 12/25, 23 123, 235, 236/247, 237
Si 13, 36, 12/25, 37 123, 235, 125/247, 236
P 13, 36, 12/25, 37 123, 235, 234/247, 236
S 12, 12, 36/25, 37 123, 124, 125/247, 345
Cl 13, 36, 37/24, 24 123, 124, 236/247, 345
Ar 13, 36, 37/24, 24 123, 124, 125/247, 345
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Fig. 2. Variation of the opti-
mum s and p exponents, f, in
CDZ- and IDZ-SESTF as a
function of atomic number,
Z. Open symbols and full lines
correspond to IDZ-SESTF
values and ®lled symbols and
dashed lines to CDZ-SESTF
values

Fig. 3. Variation of the opti-
mum s and p exponents, f, in
CTZ- and ITZ-SESTF as a
function of atomic number,
Z. Open symbols and full lines
correspond to ITZ-SESTF
values and ®lled symbols and
dashed lines to CTZ-SESTF
value.

Table 3. Comparison of the optimum SESTF parameters for the Si atom

l n f

NDZ CDZ IDZ CTZ ITZ NDZ CDZ IDZ CTZ ITZ

s 1.001134 1 1 1 1
2.473692 2 3 2 2 14.344572 13.875341 13.942950 14.355232 15.092091

3 3
2.529732 1 3 1 2
5.144439 2 6 2 3 6.546227 4.889653 7.396630 4.322021 5.194647

3 5
0.839932 1 1 1 1
2.032771 2 2 2 2 1.240714 1.280011 1.251427 1.215925 1.292206

3 5

p 1.930847 2 2 2 2
4.473197 3 5 3 4 5.631067 5.538538 5.806091 5.808663 6.826391

4 7
1.430353 2 3 2 2
2.243284 3 7 3

4
3
6

0.994952 1.769063 1.468524 1.251489 1.338038
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phenomenon was also observed [8] in NDZ-SESTF
between Z � 10 and 11, but not in CDZ-SESTF as
seen in Fig. 2. A di�erence in the optimum CDZ- and
IDZ-SESTF exponents is also found for the p1 and p2
STFs; however, the exponents corresponding to the
valence s and p orbitals exhibit similar values, more or
less.

The optimum exponents for CTZ- and ITZ-SESTF
also show approximate linearity against Z, as shown in
Fig. 3. Except for a few cases, the observed linearity is
slightly better in TZ SESTF than in DZ SESTF; how-
ever, the di�erence in the optimum exponents in CTZ-
and ITZ-SESTF is larger for the innermost orbital than
for the outer orbitals.

4 Summary

We developed DZ and TZ basis sets of STFs for the
atoms from He to Ar, where the STF exponents
corresponding to the same atomic subshells were
restricted to be common for computational e�ciency.
However, the STF n were thoroughly optimized among
integer values in order to reduce the energy loss by the
use of common exponents. All these devices are directed
towards molecular applications with existing computer
codes [13]. Molecular tests of the present basis sets are
planned in our laboratories.
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